平面设计学习网 平面设计入门 平面向量入门题解析

平面向量入门题解析


关于平面向量入门题解析最佳答案


平面向量入门题解析


1.设a=(x,y),b=(x',y'). 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ0)或反方向(λ


关于平面向量入门题解析相关答案


2.设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 ab+bc=ac。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 ab-ac=cb. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ0)或反方向(λ


了解更多平面向量入门题解析类似问题


海报平面设计入门教程

本文来自网络,不代表平面设计学习网立场,转载请注明出处:https://www.mmmfw.com/pmsjrm/6416.html

手机怎么把图片变成平面设计图

照片处理与平面设计

返回顶部